If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15n^2-227n-6=0
a = 15; b = -227; c = -6;
Δ = b2-4ac
Δ = -2272-4·15·(-6)
Δ = 51889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-227)-\sqrt{51889}}{2*15}=\frac{227-\sqrt{51889}}{30} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-227)+\sqrt{51889}}{2*15}=\frac{227+\sqrt{51889}}{30} $
| x=875+0.65x | | x=880+0.65x | | x=885+0.65x | | 88-s=13 | | x=890+0.65x | | -137=4r-5(5+4r) | | x=895+0.65x | | x=900+.65x | | –3x+24=–9 | | x=920+0.65x | | x=925+0.65x | | 7z−z=6 | | x=940+0.65x | | x=950+0.65x | | x−75 =x−23 | | x=955+0.65x | | x=960+0.65x | | x=950+0.6x | | x=985+0.65x | | 4-5v=-11 | | -5n+5=55 | | 4(3+2c)=5c+12+3c | | -6=-4-x | | 3p-120=400-p | | 60=(2x-10)(x-4) | | 4+3.n=19 | | -21+w/7=-13.3 | | 1/2(x+4)(3x+6)=36 | | Y=-7x/5+3/5 | | 3p=400-p | | -5+7k=8-6k | | x+.65x=2500 |